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1. INTRODUCTION

Let X be a real or complex normed linear space and K be an arbitrary
subset of X. Recall that an element n in K is said to be a strongly unique
element of best approximation (SUBA) of an element I in X if there exists a
constant r > 0 such that for all g in K,

III- gil ~ III- nil + r lin - gil·

For each z E X we define the set of supporting functionals at z to be the set

.:I~ = {¢ E X*: II¢II = I and ¢(z) = Ilzllf.

Consider the condition that an element n in K and I in X might satisfy:
there exists a constant r > 0 such that for all k in K

sup Re <p(n - k) ~ r lin - kll,
f/>Ej/f __ "I:

(1.1 )

where Re <p( g) denotes the real part of the functional <p( g). It was first shown
in [7] (in a slightly different form than stated here) that if K is a subspace in
a real normed linear space then condition (1.1) is a necessary and sufficient
condition for n to be a SUBA to I from K. This was subsequently extended
to the case when K is a subspace in a complex normed linear space in [1]
and when K is a convex set in [5]. We observe that condition (1.1) is always
a sufficient condition for n to be a SUBA to f, regardless of whatever
property the set K mayor may not have. And so the interesting problem is
to charaterize those sets K for which (1.1) is also a necessary condition for
an element in K to be a SUBA to I in X. This problem is analogous to the
problem of determining those sets for which the so-called Kolmogorov
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criterion is a necessary condition for an element to be a best approximation
to a given f (See, e.g., '21.) Motivated by this analogy we give the

DEFINITION 1.1. A set K is called a strong~v Kolmogorol' set if whenever
n is a SUBA to f from K then nand f must satisfy condition (1.1).

With the problem thus formulated. we can paraphrase the results of
Wulbert, Bartelt and McLaughlin, and Papini by saying the class of strongly
Kolmogorov sets includes the class of convex sets (and linear subspaces).

The following result, whose proof we will omit, shows that strongly
Kolmogorov sets have a property that is analogous to being a sun.

PROPOSITION 1.2. Let K be strong~l' Kolmogorov and 7t in K be a SUBA
to f Then for eve,y °~ A. 7t is also a SUBA to 7t + AU-~ n).

In Section 2 we give some characterizations of strongly Kolmogorov sets.
However, our results are unsatisfactory in that all the characterizations are
extrinsic. We also consider the question whether the class of strongly
Kolmogorov sets is strictly larger than the class of convex sets.

In Section 3 we give an application to best approximation by monotone
polynomials and show that best approximation by monotone polynomials in
the L I ~sense is, in general, not strongly unique.

2. STRONGLY KOLMOGOROV SETS

In preparation of the theorems to be given. we give the following
notations. We will denote the open ball centred at z with radius r by B(z. r).

For an arbitrary set A, con(A) will be the cone (which need not be convex)
generated by A. For any z. we define the supporting cone of the closed ball

B(O, II z II) at z to be the set

K o = 1g: Re ¢(g) ~ Ilzil for all iP E ~o f·

Finally, recall the tangent functional r(x. y) is defined by

rex, y) = lim Ilx + tYII-llx ll .
I~O I t

The following result is known, and is easy to prove.

PROPOSITION 2.1. r(x, y) = sup Re ¢(y).
mE !/)>;

THEOREM 2.2. Let K be an arbitrary subset of a normed linear space X.
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If n in K and f in X satisfy anyone of the following set of conditions then
they satisfy all of the conditions:

(1) There exists an r > 0 such that for all g in K,

sup Re ¢(n - g) ~ r II n - gil.
f/JES£'{_.

(2) There exists an r> 0 such that for all g in K,

r(f- n, n - g) ~ r II n - gil.

(3) Kf_"ncon(n-K) is bounded.

Proof That (1) and (2) are equivalent follows from Proposition 2.1. We
now prove (1) and (3) are equivalent. Suppose (1) holds. We shall prove that
Kf -" n con(n - K) is contained in the ball B(O, Ilf - n II/r). In fact, if there
exists an a > 0 and agE K ~ 1n} such that II a(n - g )11 > Ilf -- n II/r then

sup Re¢(a(n-g))=a sup Re¢(n-g)
f/JES£'{_. f/JES£'j_.

~ ar lin-gil

> Ilf - nil·

Thus a(n - g) E Kf -", so that

Kf -" n con(n - K) c B(O, Ilf-- nll/r).

Conversely, assume (3) holds. Then there is an a> 0 for which Kf -" n
con(n - K) is contained in the open ball B(O, a). Let g E K ~ in} be
arbitrary. Then

a(n - g)/II n - gil E Kf -" n con(n - K);

in fact, we have a(n - g)/iin - gil E Kf -". So there must be some ¢o in Yf-"
for which

Re ¢o(a(n - g)/II n - gil) > Ilf - nil,

that is,

Re ¢o(n - g) > Ilf - nil II n - gil/a.

Let r = Ilf - nil/a. Then SUP<1>EYf_' Re ¢(n - g) ~ r II n - gil·

THEOREM 2.3. The following set of conditions on a set K are equivalent:
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(1) K is a strongly Kolmogorov set.

(2) Whenever J[ E K is a SUBA to an / there exists a constant I '> 0
such that /or all g in K,

r(f··· J[.J[-g)~rllJ[ g

(3) Whenever J[ in K is a SUBA to an;: the cone

K, "n con(J[ K)
is bounded.

(4) Whenever J[ in K is an SUBA to //rom K there is then a unijorm
constant r = r(/) > 0, depending only on f. such that /or euerr k in K and
every g in the convex hull 0/ J[ and k we have

+ rl J[ it

Proof The equivalence of ( I ). (2), and (3) follows from Theorem 2.2. So
it remains to prove (1) and (4) are equivalent. Assume then (I) holds. Let 7i

be a SUBA to / from K. and k in K be arbitrary. Since K is a strongly
Kolmogorov set there is a constant r such that

sup Re¢(J[ k)~rliJ[ k
f!JEJ! ...

Now let g = Ak + (1 -- A)J[, 0 ~ i. ~ l. Then Tf g = A(Tf -- k) and so

sup Re ¥I(Tf -- g) A sup Re G?(J[ k)
OE-.J r "!

r Tf g

Thus, n is a SUBA to / and (4) follows.
Conversely, suppose (4) holds. Let n be a SUBA to/from K, and let k in

K be arbitrary. Then by (4) there is a constant r. independent of k. such that

11/ gil ~ 11/ nil + r Jr g

for every g in the convex hull of rr: and k. Since convex sets are strongly
Kolmogorov sets we have

sup Re ¢(rr: g) ?::c rl J[ g
OJ I T

for every g in the convex hull of nand g. By taking g k we see that ( I)

follows.
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COROLLARY 2.4. Let K be a convex subset of a normed linear space.
Then each of the conditions given in Theorem 2.2 are both necessary and
sufficient for an element J[ in K to be a SUBA to I

Remarks. (i) It is clear that when K is subspace then con(n k) = K for
n E K so that condition (3) of Theorem 2.2 generalizes Bartelt and
McLaughlin's result 11, p.2591 to arbitrary sets. In 15. p. I 151 another
generalization was given; but it is easy to see that the theorem is incorrect
since it implies that best approximation from any compact set is always
strongly unique.

(ii) Condition (I) of Theorem 2.2, when K is a subspace, was given
by Wulbert 171 for real fields and by Bartelt and McLaughlin for complex

fields II I·
(iii) Conditions (2) and (I) of Theorem 2.2. when K is convex. were

given by Papini 151.

(iv) The conditions in Theorem 2.3 characterizing strongly
Kolmogorov sets are all extrinsic and so it would be desirable to find some
intrinsic characterizations, i.e.. conditions that do not refer to the approx
imation problem.

A natural question that arises is whether the class of strongly Kolmogorov
sets is strictly larger than the class of convex sets. The theorem and example
that follow give some results related to this question.

DEFINITION 2.5. A set K is strongly Chebyshev if for each f there is a
SUBA to f from K.

THEOREM 2.6. In a smooth normed linear space a ser which is srrongl.\'
Chebyshev and strong!.v Kolmogorov musr be convex.

Prool Let K be strongly Chebyshev and strongly Kolmogorov. Let gj
and g2 be in K and suppose there is some 0 ( .J. ( I for which f = j.g j +
(I -.J.) g2 is not in K. Since K is strongly Chebyshev there is an element J[ in
K which is a SUBA to I Since K is strongly Kolmogorov. there are two
hyperplanes passing through 11: and separating f and gi' i 1. 2. By
smoothness, these two hyperplanes must coincide. But this leads to a
contradiction because 1, being on the line segment connecting g j and g 2 •

cannot be in the half-space opposite to the one that contains g j and g,.

Wulbert proved that in a smooth normed linear space a best approx
imation from a proper linear subspace (which is not a singleton) cannot be
strongly unique 17. p. 3541; consequently. there are no strongly Chebyshev
subspaces in a smooth normed linear space. The following simple example
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shows that even in a Hilbert space a convex set can have a strongly unique
element of best approximation.

EXAMPLE. Let R 2 be the plane with the l2-norm. Let K be the convex set

K = {(x, y): Ixl + Iyl ~ I}.

Then using condition (3) of Theorem 2.2 it is easy to verify that (1,0) is a
strongly unique best approximation to (2,0). This same example, however,
shows there are elements of best approximation which are not strongly
unique; for example, (!, Dis the best approximation to (1,1) which is not
strongly unique. This fact can be verified easily using any of the conditions
of Theorem 2.2 or using Theorem 2.7. For convenience we will assume the
origin is an interior point of the convex set.

THEOREM 2.7. Let K be a closed convex subset of a Hilbert space and
contain the origin as an interior point. If n in K is a point of smoothness ofK
then n is a best approximation which is not strongly unique.

Outline ofProof Since n is a point of smoothness of K there is a unique
hyperplane H supporting K at n. Let g be any vector orthogonal to Hand
f = g +n. Then it is easy to verify that n is the unique best approximation to
ffrom K. Since we are in a Hilbert space the set y;~" is a singleton and so
Kf -" is a half-space. On the other hand, since n is a point of smoothness of
K, the origin 0 is a point of smoothness of n - K so that con(n - K) is a
half-space. Thus con(n - K) n Kf -" is unbounded; so n cannot be strongly
unique.

The following example shows that the class of strongly Kolmogorov sets
is generally larger than the class of convex sets.

EXAMPLE. Let R 2 be the plane with the e00 -norm, i.e.,

II(x, y)11 = max{lxl, Iyl}·

Let K = {(x, y): Ix 11
/

2 + 1Y 11
/

2 ~ I}. We let the reader verify that every point
on the boundary of K is an element of best approximation, and these are the
only elements of best approximation. To show that K is strongly
Kolmogorov it is sufficient to verify that whenever n in K is a best approx
imation to J, the pair nand f satisfy the geometric condition (3) of
Theorem 2.2. We shall do this only for a couple of special cases to give the
reader a flavour of the verification process involved. For the first case we
take n = d, nand f = (~, Do The geometric condition (3) of Theorem 2.2 is
given by Fig. 1. In this case

Kf -,,= {(x,y):x~ I andy~ l}
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hG. I. A " con(n AI.

FIG. 2. K I 7 con(n -- K).

(l, 1)
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and con(n - K) is the region generated by rotating the ray through (~, - ~)

counterclockwise to the ray through (-~, n The set Kf -" n con(n - K) is
the shaded region in Fig. 1. For the second case, we take n (1,0) and
f = (3, 0). The set Kf -" corresponding to this case is given by

Kf -" = {(x, y): x <21

and con(n K) is the region generated by rotating the ray through (1, -1)
counterclockwise to the ray through (1, 1). The set K f _" neon(n - K) is
given by the shaded region in Fig. 2.

3. AN ApPLICATION TO ApPROXIMATION BY MONOTONE POLYNOMIAL

Throughout this section qa, b] will denote the set of real-valued
continuous functions defined on the interval la, b j, and ,'?" will denote the set
of all polynomials whose degree is at most n. Let I <k l < ... <k m <n be
fixed integers and let c; = ± 1, i = 1,..., m. Define the set of "monotone"
polynomials to be the convex cone

(Here p(i) denotes the ith derivative of p.) In a surprise result Fletcher and
Roulier 13] showed recently that with the uniform norm, best approximation
by monotone polynomials need not be strongly unique. It is our intention to
show that when qa, b] is equipped with the L I-norm, i.e.,

IIfll =rII(t)1 dt,
a

best approximation by monotone polynomials need not be strongly unique
either.

THEOREM 3.1. There is a function f in Cia, b] for which its best L 1

approximation from K is not strongly unique.

Proof Let g be a polynomial whose degree exceeds n. Then by the
classical theorem of Jackson there is a unique polynomial pin ..9'n which best
approximates g. Let 1= g - p. Then 0 is the best approximation to I from
.9'n' Since K is a subset of gn' 0 must be the best approximation to f from K
also.

Now fis a polynomial and sof:# 0 a.e. Thusfis a point of smoothness of
the closed ball B(O,IIIID [4, p.3501. Consequently, Yf consists of a
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singleton, say ¢. Thus Kf is a half-space. By [6, p. 181 i/J must annihilate <,.
so that 9'n is contained in Kf . Consequently.

Kfn con(-K) = Krn (-K) = - K.

This shows Kfn con(- K) is unbounded so that 0 cannot be strongly unique.
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